

Joint Task Force on Networked Media (JT-NM)

Phase 2 Report

Reference Architecture v1.0

4 September, 2015

For more info, go to jt-nm.org

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 1

Ownership and copyright

This work is jointly and severally owned by the European Broadcasting Union (EBU), the

Society of Motion Picture and Television Engineers (SMPTE) and the Video Services Forum

(VSF), and is licensed under the Creative Commons Attribution-NoDerivs 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/ or send a

letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041,

USA.

Requests for waivers to allow you to use this work in derivative works should be sent to jt-nm-

info@videoservicesforum.org

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
mailto:jt-nm-info@videoservicesforum.org
mailto:jt-nm-info@videoservicesforum.org

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 2

Contents

Ownership and copyright ... 1

What is JT-NM? ... 3

Purpose, Motivation and Scope ... 3

Reference Architecture .. 4

Hierarchy of Architectures .. 4

Context of the JT-NM RA.. 6

Systems Architecture ... 8

Layered view .. 8

Capabilities view ... 9

Conceptual model ...11

Foundational Frameworks ...14

Identity Framework ..14

Timing Framework ...17

Discovery & Registration Framework ...22

Other System Capabilities ...30

Making the Reference Architecture Real ...34

Device Interconnection Illustration ...34

Connection Management...35

Appendix A - Model views ...37

Why modeling ..37

Data Model ..37

Timing model ...42

Networked media resource dynamics ..43

Appendix B - Glossary of terms ...45

Acknowledgements ...49

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 3

JT-NM Reference Architecture

What is JT-NM?

The Joint Task Force on Networked Media (JT-NM) was formed by the European Broadcasting

Union, the Society of Motion Picture and Television Engineers and the Video Services Forum in

the context of the transition from purpose-built broadcast equipment and interfaces (SDI, AES,

crosspoint switcher, etc.) to IT-based packet networks (Ethernet, IP, servers, storage, cloud,

etc.) that is currently taking place in the professional media industry.

The Task Force was set up to foster discussion among subject-matter experts and to drive the

development of an interoperable network-based infrastructure for live media production,

encompassing file-based workflows. It brings together broadcasters, manufacturers, standards

bodies and trade associations.

This is a critical activity, as the dynamics of the industry are rapidly changing, with new players

vying for a share of the revenue pie and with ever-changing viewer consumption habits. Not

only do media companies need to be more flexible in order to respond quickly to new

opportunities to leverage or monetize content, but they also need to be able to take advantage

of economies of scale by leveraging the massive R&D investments being made in IT. The JT-

NM counts more than 300 participants from 175 organizations. More information on the JT-NM

including its scope and previously published works may be found on our website jt-nm.org.

Purpose, Motivation and Scope

The mission of the Joint Task Force on Networked Media is as follows: In an open, participatory

environment, help to drive development of an interoperable packet-based network infrastructure

for the professional media industry by bringing together manufacturers, broadcasters and

industry organizations (standards bodies and trade associations) with the objective to create,

store, transfer and stream professional media.

The motivation for the effort rests in the belief that new business opportunities will be enabled

through the exchange of professional media, including file-based and live content, across a

network, taking advantage of the benefits of IT-based technology at an affordable prices.

The scope of the effort is not simply to find a way to replace SDI with Ethernet, but to find ways

to employ internet technology at the core of our business.

At the conclusion of the JT-NM’s initial phase, it was not clear how the technologies offered in

response to the RFT we issued could be used to create a coherent system. For that reason, the

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://www.jt-nm.org/

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 4

sponsors of the task force decided to initiate this second phase of work. The goal of this phase

is to create a reference architecture.

This is Version 1.0 of the JT-NM Reference Architecture. That said, this is not a Standard upon

which systems will be based, but rather a collection of best practices, recommendations, and

frameworks which readers may choose to implement. It is expected that this Reference

Architecture will evolve over time. However, those considering implementing professional

networked media infrastructures are encouraged to review the suggestions contained in this

document and to begin implementing them as soon as practical.

This is an ongoing development with the anticipation that, over time, it will facilitate

interoperability as manufacturers develop, and users deploy professional networked media

facilities. The goal of this effort is not to write a standard but to set an overall strategic approach

for the industry. It is recognized that additional detail will be necessary in the reference

architecture if the JT-NM is to achieve its goal of increasing the level of interoperability between

professional networked media implementations. The sponsors are considering continuing the

development of this Reference Architecture in a future phase.

Reference Architecture

A reference architecture is frequently used in the computer and software industry to facilitate the

development of systems that are multi-vendor, multi-site or multi-organization. It provides a

common vision which can be propagated across an industry, using a common lexicon and

taxonomy. It serves as a baseline for near-term and future-oriented discussions, it aids in

documenting implicit knowledge and best practices, and it encourages the modularization of

functionality. The JT-NM Reference Architecture (RA) presented in this document is targeted at

the new domain of professional media that is based on packet-based network transport and

standard, rather than media-specific, computing, storage and network infrastructure.

It is recognized that there are two discrete audiences for this document – traditional

broadcasters and those from the IT community, and that the specific meaning of terms will differ

between these two communities. One of the purposes of this Reference Architecture is to

provide some definition and clarity regarding terminology used by professionals when describing

networked media. The terms used here have been chosen purposely, and the meanings of

those terms draw on both domains. Readers are encouraged to refer to the glossary in

Appendix B for specific definitions.

Hierarchy of Architectures

The JT-NM Reference Architecture provides principles and generalized models that can be

reused or easily adapted to the specific business context of an organization.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 5

Figure 1: Hierarchy of architectures

From an organization-specific reference architecture, system architects can derive system

designs addressing specific operational scenarios which in turn can be implemented in real life

systems. The aim is that the JT-NM RA introduces key frameworks and concepts that will be

adopted by manufacturers and implemented in end-user facilities such that the task of

integrating disparate products is less difficult, and that overall interoperability of software in IT-

based media facilities is improved. The JT-NM RA was developed for a broad range of

operational scenarios, from conventional live TV production, radio production to web-first and

cross-media production (for many of Web, mobile, TV, radio, etc.). These workflows include a

combination of real-time, near real-time and non real-time workflows. It is hoped that this

approach will allow the industry to take advantage of the possibilities offered by networked

media architectures.

The JT-NM Reference Architecture is described through a number of different representations

or views. This set of representations is necessary to effectively explain and provide context for

the JT-NM RA.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 6

The different representations are:

1. Conceptual Architecture – presenting core concepts used in describing the JT-NM

Reference Architecture Capabilities

2. Systems Architecture – presenting a layered view of how and where the capabilities

being delivered by the Reference Architecture fit into a larger architecture of an

organization. Two levels of depth are presented in this document. A high level Layered

view, and a more detailed Capabilities view of this Systems Architecture including

Foundational Frameworks and System Capabilities that together may be used to

connect devices and provision a facility.

3. Data Models – presenting the domain model relevant to the JT-NM scope. It is

represented using UML (Unified Modeling Language) notation. The data model details

Identity, Timing, and Discovery & Registration, since they are the focus of this phase of

the JT-NM work. A more complete data model is presented in Appendix A, which

provides greater context and specificity, and suggests how the JT-NM RA could be

used.

4. Dynamic Models – describing, by example, how to use the frameworks presented in

this document, and more generally, the overall JT-NM Reference Architecture. The

examples focus on the foundational frameworks (identity, timing, and Discovery &

Registration), and touch upon other system capabilities that must be delivered by the

Reference Architecture in the future (e.g. device and connection management). The

dynamic models are expressed using sequence diagrams (often called event trace

diagrams) which are part of UML notation.

Context of the JT-NM RA

Areas in color surrounded by a bold line in the layered model in Figure 2 are the focus of this

RA, and are shown within its overall business context.

As with every other layered diagram in this document, each layer defines a domain of

responsibility that serves the layer above it. This way of organizing responsibilities comes from

the networking paradigm (e.g., OSI model1, TCP/IP stack, etc.) and is a successful pattern that

enables composability in a system. The approach also allows a part of a system to be changed

without having to re-engineer the entire system.

1
 http://en.wikipedia.org/wiki/OSI_model

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://en.wikipedia.org/wiki/OSI_model

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 7

Figure 2: Business Context - Focus of RA is inside of bold line.

The top layer concerns the Governance and Strategy aspects of the organization. This is

realized by offering the Products and Services that are in turn produced by the business

Operations. Operations are achieved by consuming the three layers of the technical systems:

business Applications, Platforms and Infrastructures. Facilities host the technical apparatus from

the Infrastructure layer, whether they are physical or virtual, in-house, external or hybrid.

Two key management aspects are represented across all layers since their role is to ensure that

the strategic objectives of the organization are achieved throughout all the layers: Security

Management and Service Management.

The JT-NM Reference Architecture presented in this document focuses on the three technical

layers – Applications, Platforms and Infrastructures.

Se
cu

ri
ty

 M
an

ag
em

en
t

Products & Services

Infrastructures

Operations

Applications

Platforms

Governance & Strategy

Se
rv

ic
e

M
an

ag
em

en
t

Facilities

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 8

Systems Architecture

Layered view

This following model provides a closer look at the operational and technical layers of the

business context view presented above.

Figure 3: Systems Architecture Layered view

● Operation Layer: This layer describes a business process overseen by humans.

Technology is not involved at this level. Think about the items in this layer as the

business functions the organization would like to accomplish, such as live studio

operations, post-production workflows and network origination functions. This layer is

not in scope of the JT-NM activity.

● Application Layer: This layer consists of software applications and user interfaces that

are used to accomplish the business processes. While traditionally this layer may have

consisted of a piece of hardware such as a video switcher or a CCU unit, now it is

common to find software user interfaces such as virtual router control panels using the

computing power in the Infrastructure Layer.

This layer is not in scope of the JT-NM activity (JT-NM will not be designing video

editors, for example). That said, the JT-NM RA does affect this layer; for example, the

RA describes how Capabilities might be exposed in the technical layers below, so that

they might be used by applications in this layer.

● Platform Layer: The software services in this layer provide the System Capabilities that

are required by the Application Layer above. Examples of System Capabilities include

Media
Devices & Systems

Media Applications

Networks

Data Center & Specialty Hardware

Operation
Layer

Application
Layer

Platform
Layer

Infra-
structure

Layer

Media Platforms

Media Operations Enterprise Operations

Enterprise Applications

Enterprise Platforms

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 9

timing, synchronization, and discovery & registration. These services exploit the

resources provided by the Infrastructure Layer below.

● Infrastructure Layer: This layer consists of two sub-layers: the Data Center & Specialty

Hardware and the Network sub-layers. Typical items included in the Data Center layer

are PC servers, storage arrays, GPU farms, hardware accelerators, IP/SDI gateways,

etc. The Networks sub-layer consists of network switches, various network transport

protocols, and physical transport mechanisms.

The vertical “Media Devices & Systems” represent the more conventional monolithic approach

where all the hardware, components and user interfaces are integrated in the same box. This

model shows how both monolithic systems and service-based systems can co-exist in a hybrid

JT-NM architecture, and provide a migration path from the former to the latter.

Another integration that is illustrated in the model is the “Enterprise” functions that can share

resources and services with “Media” functions. No longer are media operations an opaque box

to the Enterprise. Automated metadata extraction, for example, could be used to inform

business systems when particular content becomes available in a media operations area.

Capabilities view

In this section the layers of the Systems Architecture Layered view are expanded to provide

greater detail.

The Capabilities view’s focus is on the core System Capabilities needed to support a Networked

Media Reference Architecture. Conceptually, a media application in the application layer

consumes System Capabilities offered in the platform layer in order to perform Tasks on

Content.

Three fundamental System Capabilities have been identified as being essential to even the

most basic interoperability in professional networked media systems. These capabilities are

Identity, Timing, and Discovery & Registration. These are called Foundational Frameworks.

They are identified in bold in the Media Platform layer below and are discussed in further detail

later in this document. It is recognized that, in addition to these Foundational Frameworks,

other System Capabilities are required in a solution-specific system design for it to be usable.

Some of these functionalities are defined within the Capabilities View as subsystems and are

described later in the document under System Capabilities.

Structuring a system architecture into Foundational Frameworks and System Capabilities

reduces interdependency within a system and promotes loose coupling. These are key

architectural principles that can be used to manage complexity and enable reuse.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 10

 Figure 4: Systems Architecture Capabilities view

The Capabilities View in Figure 4 includes:

a. Foundational Frameworks (Timing, Identity, and Discovery & Registration) are

fundamental building blocks of interoperability in the professional networked media

infrastructure

b. System Capabilities (shown as bold, unshaded boxes, for example Connection

Management) are identified in the RA, and their responsibilities and relationships are

defined in the System Capabilities portion of the document below

c. Other System Capabilities providing capabilities in existing facilities such as SDI I/O are

shown in grey boxes with dimmed text.

d. Selected model elements are included from the Data Model presented in Appendix A

and are further introduced in the following Conceptual Model. They are represented on

this diagram to highlight the relationship between the two views, by showing the

mapping of model elements to the layers.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 11

Another fundamental precept of the Reference Architecture is the notion of Resources.

Readers coming from a broadcast background might want to familiarize themselves with this

concept from the IT domain, wherein everything within a system is a Resource and where each

Resource is uniquely identified. The notion of Resources and their identity is a great aid in

reuse and composability, two well-proven patterns of software development. This use of the

word is subtly different from the common meaning of the word resource. Readers seeking to

learn more about this concept are referred to the Web Characterization Terminology &

Definitions Sheet2.

Conceptual model

As workflows transition from today’s media devices and systems to tomorrow’s corresponding

Systems Architecture layer in data centers, the concepts of a shared model enable

interoperability. Here is a brief overview of the informative conceptual model shown in Figure 5

below.

There are many ways of explaining the conceptual model, starting with the infrastructure

elements and reading down, starting with the elements of data and their timing and reading up,

or starting from a business perspective with the content that needs to be leveraged or

monetized. The reality is that this is a multidimensional model that can only be expressed in a

limited way on one sheet of paper. The first model description below reads from the top left

down, and is an infrastructure-first description - keep reading this document for other

perspectives.

At the heart of networked media operations is the Network, typically a packet-based Ethernet

network. Nodes are connected to Networks to provide additional infrastructure such as

processing power, storage and interfaces. Devices, which may be software-only services or

physical Devices, such as a camera, are deployed onto the Nodes to provide the Capabilities

required to complete Tasks in a facility.

Devices can be Sources for Essences and related data, such as a camera, microphone or a

mixer. Where traditional facilities use connections over physical wires to move Essences

between Devices, networked media facilities will typically move Essences as Grain Payloads

that are subdivided into network packets for transportation.

When Essences move over the Network, a connection exists between a Sender on one Device

and a Receiver on another. Information, including Essences, moves between Senders and

Receivers in the form of Flows, where a Source may provide different qualities for each of its

Essences for each Flow, such as uncompressed, mezzanine and/or proxy. Each Flow consists

of a number of Grains, where each Grain represents an element of Essence such as a video

frame, or frames-worth of audio samples, or time-varying camera position data. With reference

to a Clock, each Grain consists of a Grain Payload and a Time Stamp which notes the time that

2
 http://www.w3.org/1999/05/WCA-terms/

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 12

the Grain Payload was recorded, along with a unique identity assigned in accordance with this

RA. A Grain may also contain data.

Figure 5: Conceptual model

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 13

Essences are normally experienced through the playing of a live or recorded Rendition

comprising a collection of time-synchronized Flows (e.g., proxy-quality video with its associated

audio tracks). Renditions can be stored in files or streamed over networks. Different qualities of

Flow provide different representations of a Source (e.g. a High res and a proxy-quality of the

same video). When managing these different representations during or after production, it is

convenient to collect together related Sources into Source Groups that are virtual containers for

related material. Different kinds of Source Group will be identified in the future, including ones

for representing editorial compositions, but in their simplest form, examples of Source Group

include:

● all Sources related to the same camera (“Camera 4”’s video and audio);

● all Sources available as inputs to the mixer in a broadcast truck at a sports game;

● the output of the truck’s mixer as received back at base, combined with an additional

foreign language audio Source. Such a Source Group (not all) may realize a Content

deliverable - the broadcast of the game.

As part of business operations, Content is source-material that can be transformed by Tasks

using a method defined by a Capability which is provided by a Device or Devices. For example,

a workflow engine runs a job that controls a transcoder to transform material ready for delivery

to a mobile phone platform.

The final piece of the jigsaw is a Registry that keeps track of the current state of the

infrastructure and media, so that they can be registered, discovered, and so that connections

between Senders and Receivers can be determined. A Registry may be federated across more

than one site to make each site appear as part of the same network. As the networked

resources may be virtual, the Registry is the place where the dynamic structure of a networked

media facility can be established.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 14

Foundational Frameworks

This section details the Frameworks for Identity, Timing, and Discovery & Registration. Each of

these frameworks is defined according to the following template:

● Introduction - an overview of the approach

● Prescriptive - required behavior for implementation

● Best Practices - the best practices noted below are recommended for JT-NM-based

system designs

● Models - Models illustrating the framework

● Standards - An overview of existing standards that can be used in implementations

● Examples - Examples of how the framework can be used for some typical scenarios

Identity Framework

Introduction

The JT-NM Reference Architecture rides on the common currency that is the Internet, through

the elements of Unique Resource Identifiers (URNs/URLs) and hyperlinks. The JT-NM Identity

Framework includes three rules, which are listed below. Every element of the architecture has a

name, which in turn means it is a Resource that anyone could make reference to. When applied

to professional media, Identity is a core concept in software-based systems that facilitate

interoperability and reuse of generic Internet technologies.

For a description of the architecture of identification on the Internet, see

http://www.w3.org/TR/webarch/#identification.

Prescriptive

1. Internet-style Unique Resource Identifiers (Internet Standard STD 66 and RFC 3986)

shall be used to identify the Resources of networked media, including Discoverables,

where every addressable instance of a class in the JT-NM models is a Resource with at

least one identity.

2. Identity is a logical indirection that shall be resolvable to provide access to a

representation of a Resource, as per RESTful principles3, hiding form, location and

function. Conceptually, physical-resources are not addressed directly.

3. Relationships between Resources shall be expressed using identifiers and only through

identifiers. Change shall be managed as a kind of relationship, whereby a reference to

3
 https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 15

the current version of a Resource is a pointer to an Immutable Object that is the latest

revision.

Best Practices

● Universally Unique Identifiers (UUIDs) [RFC 4122] can be generated locally without

reference to a central authority, and pseudo-random UUIDs (type 4) have sufficient

randomness that they can be generated without clashes - even on a global scale. UUIDs

are commonly used where automatic identity generation is required across network

Nodes, with a specified mapping to a URN. However, that URN is rarely resolved directly

and the UUID is used as part of a URL.

● The Internet’s domain name registration services provide the owner of a domain with a

limitless number of unique resource locations, where each identifier includes the domain

name. For example, an e-mail address (example@broadcaster.com) or the address of a

webpage (http://www.broadcaster.com/contact.html). In this way, literally billions of

Internet identifiers are available for the cost of a domain name registration with the

consequence that managing globally unique identity can be achieved locally by

managing paths within a domain.

● One Resource may have more than one identifier. Redirection is a common practice on

the Internet, whereby a Resource is referenced by an identifier that is actually a pointer

to another identifier. In this way, Internet identity can change to track changes in real-

world identity, such as one company being sold to another.

● Query parameters and fragments are not considered as part of an identifier. Query

parameters are particularly used to filter result sets.

● If a Resource has many revisions, the following path pattern can be used to access each

revision as a subresource:

○ Implicit reference to the current version: http://www.facility.com/resource/

{unique-id}

○ Explicit reference to the current version: http://www.facility.com/resource/

{unique-id}/latest

○ Explicit reference to version 3 of unique-id:

http://www.facility.com/resource/{unique-id}/revisions/3

○ List of all available revisions: http://www.facility.com/resource/

{unique-id}/revisions

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 16

Model

Figure 6: Identity model

An ID provides identification for all Resources and any other identifiable classes of the reference

architecture. An ID may have one or more URIs and it is best practice to record the revision

number of the Resource so that distributed copies of a Resource can be compared like-for-like

and any genuine conflicts detected. IDs are Stable Identifiers for Immutable Objects. For

reasons of detecting errors in data payloads or conflict resolution, a checksum or hash value

may be generated from the content of the Resource.

Standards

IETF RFC 4122 ‘A Universally Unique IDentifier (UUID) URN Namespace’

A 16-byte number that is in common use across the IT industry. With 2122 unique values,

a type 4 pseudo-random UUID can be generated locally with a very high degree of

likelihood of not clashing, allowing for loosely coupled generation of identifiers across

wide area networks without the need for a central brain. Normally formatted as a

hexadecimal string.

IETF STD 66, RFC 3986 ‘Uniform Resource Identifier (URI): Generic Syntax.'

URIs are the identifiers of the Internet. Of particular interest are http: URLs that have

become de facto due to their support in web browsers and the global domain name

systems. See http://www.w3.org/2001/tag/doc/URNsAndRegistries-50 for further

discussion.

Examples

The following three identifiers are for the same channel in a mixing desk:

● urn:uuid:DBC31256-A110-4BB1-8388-C2F55B372538

● http://registry.broadcaster.com/news/recievers/DBC31256-A110-4BB1-8388-

C2F55B372538

● http://registry.broadcaster.com/news/recievers/mixingdesk3/input7

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://www.w3.org/2001/tag/doc/URNsAndRegistries-50

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 17

Timing Framework

Introduction

The Timing Framework uses Time Stamps to ensure that Flows are appropriately aligned during

switching, mixing, presentation and other professional media network operations. The Time

Stamps are associated with Grains - representations of elements of Essence or other data at a

particular time (for example a video frame).

Accurate timing is critical to professional media operations. It allows for proper lip sync and

phase alignment. Timing is also critical for accurately identifying segments in the non-linear

editing process, and for automated recording and playback of linear streams.

Prescriptive

Time Stamp and Time Base

● Every Grain shall have a Time Stamp

● Flows shall be synchronized using Time Stamps

Time Stamps shall be expressed in the units of the Time Base and derived from a network-

distributed Clock.

Synchronization

● Audio/Video Synchronization - The Synchronization method shall allow for

Synchronization of audio and video within the bounds of EBU TR R37-2007.

● Multi-Channel Audio Imaging Synchronization – The Synchronization method shall allow

for Synchronization of multiple channels of audio intended for synchronized audio

imaging to within 10 µs.

● Number of Phase Aligned Groups - The Synchronization mechanism shall provide for

multi-channel audio imaging Synchronization for any number of mono channels.

● Data Synchronization – Data shall be able to be synchronized to an associated Grain.

This includes synchronization of SDI Ancillary Data to a video Grain (frame) for support

of existing workflows.

Best Practices

Time Stamp and Time Base

● SMPTE ST 12-1 (formerly known as “SMPTE 12M”) Timecode should be derived from

networked distributed time as per SMPTE ST 2059-1. Note: this requires use of

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 18

additional metadata such as that carried in the SMPTE PTP profile specified in ST

2059-2

● The Time Stamp for video should be the time of the capture of the top of the field

(interlaced) or the top of the frame (progressive), and for audio should be the time of the

first sample of the Grain.

● Clocks should use the PTP timescale

● Time Stamps should have an origin (zero point) of the SMPTE Epoch as defined in

SMPTE ST 2059-1

● For offline-generated Flows, such as computer generated video and non-linear edited

Essence, Time Stamps may be synthesized in a process that is not necessarily real

time, so as to align the Flow in time with other, live captured, Flows

Synchronization

● Clock Synchronization - Synchronization of Clocks on Devices should be achieved

through network transmissions

● Legacy Timing Support - It should be possible to generate a Clock from a legacy

Synchronization signal (such as black burst and Timecode + date)

● Slave Synchronization - Slave Clocks should be synchronized to the master with an

accuracy of 1µs within 5 seconds of connection to the network

● Multiple Camera Synchronization Requirement – The Synchronization system should

support the ability to have the capture of video from multiple cameras with the

Synchronization of raster sampling within ±2 µs

This is provided so that in live capture, a switch or fade between cameras pointed at the same

object is undetectable. The ±2 µs timing is based on the length of the SMPTE RP 168 switch point

for 720p59.94, which is the shortest SMPTE RP 168 switching area (4.37 µs). This requirement

may be overly stringent, but without additional information it is difficult to relax this constraint. Many

applications require considerably less stringent tolerance.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 19

Model

Below is a UML model that shows the elements of timing & synchronization.

Figure 7: Timing model

The elements of this model include:

● Clock: a networked component providing a ubiquitous time reference.

● Epoch: identifies the zero value of a Clock.

● TimeBase: specifies the units used for measuring time. Expressed as a rational (or

integer) number of units per second.

● Grain: represents an element of Essence or other data associated with a specific time,

such as a frame, or a group of consecutive audio samples, or captions.

● TimeStamp: an absolute time (that is, an offset from an Epoch) describing the

relationship of a Grain with a Clock.

Standards

IEEE 1588-2008 “IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems”

A protocol is provided in this standard that enables precise synchronization of Clocks

communicating via packet network, otherwise known as “Precision Time Protocol”

(PTP). A PTP time stamp is a representation of time elapsed from the PTP Epoch (1

January 1970 00:00:00 TAI) stored as 48 bits of seconds and 32 bits of nanoseconds.

SMPTE ST 2059-1 “Generation and Alignment of Interface Signals to the SMPTE Epoch”

Definition of the SMPTE Epoch, and mechanism for alignment of legacy analog and

serial digital interfaces to a PTP time. The SMPTE Epoch is the same as the PTP

Epoch (1 January 1970 00:00:00 TAI).

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 20

SMPTE ST 2059-2 “SMPTE Profile for Use of IEEE-1588 Precision Time Protocol in

Professional Broadcast Applications”

A PTP profile designed to provide for synchronization of 1 µs accuracy within 5 seconds

of connection to an operational PTP network, and also to convey Synchronization

Metadata required for synchronization and time labeling of audio/video signals.

IETF RFC 7273 “RTP Clock Source Signaling”

Specifies Session Description Protocol (SDP) signaling that identifies Time Stamp

reference Clock sources (such as PTP) and SDP signaling that identifies the media

clock sources in a multimedia session.

Examples

The diagram below shows a potential implementation of a PTP-based timing solution.

Figure 8: Potential implementation of a PTP-based timing solution

A master clock is distributed to all Nodes in the local area network from a PTP Grandmaster

using IEEE 1588 PTP. Synchronization between PTP Grandmasters over the wide area is

achieved through the use of a common GPS Clock reference.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 21

Figure 9: Potential implementation of a PTP-based timing solution

As video essence and audio essence are acquired, the master clock is sampled and the value

used to generate a Time Stamp that is bound to the resulting Grains, where each Grain

represents an element of Essence or other data. Grains are transported over the network,

received by the viewer Device and placed in a buffer ordered by Time Stamp.

The clock used for presentation of the video and audio is offset (delayed) from the master clock

by an amount necessary to compensate for processing and network delays and to integrate any

packet jitter introduced by the system. Grains are presented from the receive buffer when the

presentation clock value reaches their Time Stamp value. Since the master clock is distributed

to every Node this technique can be used to synchronize presentation across multiple Nodes.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 22

Discovery & Registration Framework

Introduction

Discovery & Registration ensure that parts of a networked infrastructure can find each other,

and obtain appropriate information about each other. The following summarizes a proposed set

of patterns:

● Registries, which may be distributed across multiple hosts, hold information about

Discoverables such as Devices and Sources. This information includes unique

identification and other data (e.g., human-readable labels)

● Nodes, which host Devices, register and de-register Discoverable information through a

Registration Interface, and provide regular health information concerning the continued

availability of Discoverables

● Clients use a Query Interface to access Discoverable information. This can be on a one-

off or subscription basis

● The Registration and Query Interfaces can be discovered through Advertisements to the

network

● Applications can obtain information about connections between Senders and Receivers

through the Query Interface

● To support minimal (point-to-point) applications without a Registry on the network,

Nodes can make Advertisements of their Discoverables to the local network

Prescriptive

The Discovery and Registration Framework requires the following:

● Registration and Query Interfaces shall be discoverable over the network

● A Node shall check periodically for the existence of a Registration Interface, and if this is

present, the Node shall register each of its Discoverables with the Interfaces. A Node

shall de-register (using the Registration Interface) Discoverables that are no longer

available

● An application or Device shall not use other (“out of band”) mechanisms to communicate

information that should be communicated through the mechanisms described here. It

shall only communicate with a Registry through the Registration and Query Interfaces

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 23

Best practices

Beyond the prescribed behavior above, current best practices suggest the following:

● Discovery & Registration are logically decoupled activities: discovery enables connection

to an Endpoint, while registration enables querying of a Node’s Discoverables

● The choice of technology used for discovery (e.g., DNS-SD over multicast DNS) is

independent of the choice of technology used for registration and query (e.g., HTTP)

● In some implementations it is desirable that Devices be responsible for providing health

information, such as through a heartbeat mechanism. This allows a Device’s

Discoverables to be de-registered if it stops communicating

● In some implementations, push transfer of registration, de-registration and health

information is desirable. (Polling is an anti-pattern that does not scale well.)

● Multiple Registries, possibly with different implementations or optimizations, may be

hidden behind the Registration and Query Interfaces

● Details of how a Registry works (including any internal protocols used in a distributed

Registry) should not be exposed through the Interface, nor should knowledge of how the

Registry works internally be necessary in order to make use of the Interface.

Furthermore, this framework does not specify or assume technology for the Registry, nor

establish any requirements concerning its characteristics or performance.

Several implementations of distributed databases are available. The Raft

[http://raftconsensus.github.io/] and Paxos

[http://research.microsoft.com/users/lamport/pubs/pubs.html#reaching] consensus

algorithms may provide suitable bases for some applications. The “etcd” open source

project [https://github.com/coreos/etcd] is an example of a distributed database that uses

the Raft algorithm.

● In some implementations, it is more efficient to simultaneously discover and register

multiple Devices hosted on the same Node

● The application of web-based protocols and patterns (e.g. REST APIs) can facilitate

problem solving, faster development cycles and simplified system integration.

● Any framework implementation should scale from a two-box solution to a global network

potentially consisting of many thousands of Devices.

● Peer-to-peer operation without Registration and Query Interfaces may be appropriate in

some cases. In such cases a Node should provide information about its own

Discoverables through the Node Interface and is responsible for maintaining its own

(internal) Registry of Discoverables on other Nodes. To enable discovery, a Node can

create multicast DNS-SD Advertisements for each Discoverable available on its

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 24

Device(s). The service type indicates the type of Discoverable, e.g. _jtnm-

source._tcp.

● It should be possible to support operation in a “zero-configuration” environment in which

Nodes can determine their own IP addresses and local domain names.

● In some implementations, policy-based Advertisements customize interconnection

between different organizations/domains. For example, a provider may wish to expose a

subset of Sources which are available for a particular remote production.

Model

Figure 10: Model for discovery and registration

 Figure 10 shows the elements of the framework model relevant to discovery and registration:

● Devices are hosted by Nodes.

● Devices offer Capabilities.

● Devices can provide Sources of Flows.

● Devices can have Senders and Receivers for Flows.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 25

● Nodes, and their associated Devices, Capabilities, Sources, Flows, Senders and

Receivers are Discoverables. NB: For clarity Discoverable is not shown in Figure 10.

Other types of Resources may also be Discoverables; however the current RA does not discuss such cases.

● Nodes register Discoverables with a Registry through a Registration Interface.

● Client applications use a Query Interface to find Discoverables.

● Advertisements announce the Registration and Query Interfaces, and (for peer-to-peer

discovery) a Node’s Discoverables, and allow a client application to resolve the

corresponding Interfaces.

Standards

IETF RFC 6763 “DNS-Based Service Discovery”

DNS-SD provides one implementation of Advertisements. The service type can be used

to indicate the type of Interface or Discoverable (e.g., _jtnm-query._tcp, _jtnm-

device._tcp). The SRV record of the DNS-SD message allows a client to resolve the

Endpoint.

IETF RFC 6762 “Multicast DNS”

Multicast DNS can be used to distribute DNS-SD Advertisements within LANs. This

standard also enables Nodes to determine their own .local domain names in an zero-

configuration environment.

Many scenarios may use an architecture with a registry distributed across multiple interconnected LANs. In

this case multicast DNS announcements are sufficient to discover and resolve the Registration and Query

Interfaces.

IETF RFC 3986 “Uniform Resource Identifier (URI): Generic Syntax”

URLs provide a widely-adopted representation of Endpoints.

IETF RFC 2616 “Hypertext Transfer Protocol -- HTTP/1.1”

HTTP provides a suitable protocol to implement Interfaces.

Although REST is not a standard, it is appropriate to use a RESTful approach

[https://en.wikipedia.org/wiki/Representational_state_transfer] based on standard HTTP verbs acting on

representations of Discoverables, for example HTTP PUT and DELETE for registration and de-registration

and HTTP GET for query.

IETF RFC 6455 “The WebSocket Protocol”

Subscription to a Query Interface can be implemented using RESTful HTTP to set up

and tear down the subscription and WebSockets for the ongoing information feed.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 26

IETF RFC 7159 “The JavaScript Object Notation (JSON) Data Interchange Format”

JSON can be used for representation of Discoverables for the Registration and Query

APIs.

IETF RFC 3927 “Dynamic Configuration of IPv4 Link-Local Addresses”

IETF RFC 4291 “IP Version 6 Addressing Architecture”

These two standards allow Nodes to determine their own IP addresses in a zero-

configuration environment.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 27

Examples

This section uses UML sequence diagrams to demonstrate examples of Discovery and

Registration patterns. They assume implementation with multicast DNS-SD and RESTful

HTTP/JSON.

Registration

Figure 11 shows an example of registering a networked audio Device producing a 24-bit

uncompressed signal in an RTP stream. The Node hosting the Device discovers a Registration

Interface and registers (in sequence) itself, a Device, a Source, a Flow and a Sender.

Figure 11: Registration sequence

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 28

Query

Figure 12 shows an example in which a routing control panel discovers a Query Interface,

makes a one-off REST query of the available Devices, and subscription queries of the available

Senders and Receivers.

Figure 12: Query sequence

Peer-to-peer operation

Figure 13 shows an example of how a video monitor can find a Flow being sent from a camera

without use of Registration or Query Interfaces. The camera Node advertises itself and its

Discoverables directly, and the monitor Node updates its internal registry. The video monitor or

camera can use their respective internal copies of the registry to discover each others’ Control

Interfaces and manage connection of media Flows between them.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 29

Figure 13: Peer-to-peer sequence

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 30

Other System Capabilities

This section refers to the Systems Architecture Capabilities view earlier in this report, (Figure 4).

A version of this diagram is repeated here for convenience.

Figure 14: Systems Architecture Capabilities view with System Capabilities blocks highlighted

Devices and Nodes are fundamental building blocks of the RA, and their Capabilities are

referenced extensively in the Foundational Frameworks. Node/Device Capabilities are

described here to help the reader build a picture of how they fit into the Systems Architecture. A

number of other System Capabilities were also identified beyond those referenced in the

Foundational Frameworks. While time did not allow for full exploration of these capabilities, they

are mentioned here to highlight to readers that these groupings of System Capabilities will likely

be present in any organization’s solution-specific system design and implementations.

Device/Node Capabilities

Responsibilities: Devices may dynamically offer up capabilities to be consumed in the media

application layer. A Device’s Capabilities may be consumed by one or more media

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 31

applications, and as workflows change, those Capabilities may be used by an entirely different

application at a later time.

Devices may have Senders, from which they make available Flows to the Network, and/or

Receivers, which they use to consume Flows from the Network.

Devices implement Interfaces through which their Capabilities are accessed. These Interfaces

are exposed through Endpoints, to which clients can connect.

A Device may support only single Capabilities, such as ‘file retrieval’, or it might be able to

provide a set of capabilities combined together and exposed as a more complex function, such

as a video switcher performing both mixing and routing.

Devices and Nodes also provide Endpoints exposing Interfaces to report on their configuration,

status and health

Devices and Nodes can register themselves so they can be discovered.

Relationships: Devices are hosted by Nodes. Identity and registration of Nodes and Devices is

managed as part of the Identity, Discovery & Registration Frameworks and their availability is

managed through provisioning and resource management.

Device Provisioning

Responsibilities: Enables virtual Devices to be instantiated and “spun up” from a machine-

readable description.

Relationships: Service provided by a Node.

Devices may be physical boxes connected to a Network, or virtual instances provisioned onto a

Node. Provisioning is only relevant in the latter case.

Virtual Devices may have fixed or variable Capabilities, depending on their implementation.

Resource Management

Responsibilities: Tracks usage of processing and networked Resources and provides

information on Resource availability to configure clients, provide status, availability and

capability information as an aid to provisioning Devices and making connections between their

Senders and Receivers.

Relationships: Uses dynamic information provided by the monitoring services, aggregating

this with information gleaned from system configuration tools.

A Task Engine may provide intelligent provisioning behavior based on information made

available by the Resource Manager, using Provisioning services to provision Devices to Nodes

on demand to perform a Task with optimal use of system resources.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 32

Flow Transformation

Responsibilities: Process Flows of Grains, performing transformation of content in specific

ways. May take single or multiple Flows as input, and produce single or multiple Flows as

outputs. Transformation Capabilities generally operate independent of Timing services and do

not modify Grain timing metadata. For timing related transformation Capabilities, see Re-timing.

Examples: encoding a video Flow, downscaling and de-interlacing a video Flow from 1080i to

720p and mixing of audio or video Flows

Relationships: Transformation Capabilities are provided by Devices (specifically Processing

Devices).

Re-timing

Responsibilities: Modify Grain timing metadata to reconcile timing at a system boundary or

between different Flows. Includes re-timing within Flows.

Examples: video frame synchronization or frame rate conversion

Relationships: Re-timing Capabilities are provided by Devices. Time-shifting of Flows (delay)

and slo-mo playback re-timing may use Flow Storage and Retrieval Capabilities.

Flow Transport

Responsibilities: Provides network carriage (aka transport) of Flows between Senders and

Receivers across the network fabric, preserving core timing and identity information.

Relationships: Routing between Senders and Receivers is managed through the Connection

Management services.

Connection Management

Responsibilities: Enable interconnection of Devices across the network. Provide mechanisms

to create connections over which Flows are transported between Senders and Receivers

belonging to different Devices.

Relationships: May use Resource Management capabilities to make decisions on whether

connections can be supported with current network loading, etc.

 A special case of connection is the seamless switching between two Flows.

Connection Management may offer QoS guarantees for connections and/or make use of

distributed monitoring capabilities, depending on system implementation choices.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 33

Flow Storage and Retrieval

Responsibilities: Provides persistent storage of Grains and Flows with their timing and identity

metadata intact.

Relationships: Provides low level interfaces to allow Devices to directly ‘record’ to and ‘replay’

from the store. Provides higher level interfaces to allow sequential and random access retrieval

of Grains in various forms and formats. May also provide interfaces for ingest of file-based

content.

Control Surface / UI

Responsibilities: Discover and control Devices through Capabilities exposed in the Discovery

and Registration Framework

Relationships: Uses Discovery and Registration Framework to discover Resources overall

including Nodes, Devices and their Capabilities

Distributed Monitoring

Responsibilities - Tools/applications that monitor the services and activities (such as

provisioning and connection management) across the Networked Media Platform. Tools use

interfaces provided by Devices, Nodes and network resources to interrogate and report on

Device status as well as to configure Devices. Monitoring, as an application, aggregates

information from across Resources to provide a more comprehensive view of an activity or

facility.

Responsibilities - Capabilities exposed by Resources for Monitoring: Monitoring accesses

information from Resources. This includes, for every resource, being able to determine: Who

the resource/device/service is – its name and basic resource, What it is capable of including

How it can be deployed, Where it is located in terms of network attachment, the Health of a

service including status and performance, Inspection of the services current configuration,

Configuration for/of the service.

Relationships: uses interfaces provided by Devices, Nodes and network resources to

interrogate and report on their status as well as to configure them.

Master Clock

Responsibilities: provides a common clock reference and timing services for all applications,

processes, subsystems and hardware regardless of location or locality. In the JT-NM

Reference Architecture, this is provided by a network-derived clock, as described in the Timing

Framework.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 34

Relationships: This is used by the Timing Framework leveraging existing very high precision

commodity infrastructure.

Making the Reference Architecture Real

Applying a Reference Architecture is, by its very nature, something that is quite abstract, and is

something that requires additional work in order to build out into real systems. In this section,

two diagrams are provided to illustrate how one might use the Reference Architecture to begin

to build a solution-specific system design. The first shows how some familiar Devices can be

connected together, with monitoring, control, search and task management as cross-cutting

concerns. The second illustrates a process whereby an operator uses a web routing control

panel to interconnect a sender and a receiver.

Device Interconnection Illustration

Figure 15, the example UML component diagram shows how a number of familiar Devices are

related and how they can be connected together to build a networked media facility. This

diagram shows how a common approach for monitoring, control, search and access to media

can be adopted for all Devices.

A particular benefit of this approach is that it demonstrates how the core function of a Device, its

control, monitoring and access to its content can be decomposed into separate concerns.

Constraints on the form and location of equipment that were imposed by dedicated hardware

and SDI cables can be overcome using IT technology, allowing for data-center style

deployments. Moreover, with appropriate adherence to IT standards, off-the-shelf tools for

control and monitoring, including browser-based applications, can be applied.

At the core of the model are Devices, controlled according to their Capabilities and monitored

via their Monitoring Interfaces. Some Devices are sources for content, such as a camera, and

some are destinations, such as a recorder or a display. Some are Processing Devices, such as

a vision mixer. Stream Receivers can connect and disconnect from streams provided by stream

sources through stream access interfaces. Some Devices provide storage of content through

File Systems or Object Stores. These provide a random access interface for retrieving, growing,

replacing and deleting the content. Both stream access and random access are possible by

following a path locator for the specific version of content offered by a particular device.

Other kinds of component shown include:

● task engines, with task interfaces that allow tasks to be tracked;

● search engines that can trawl content storage and track stream provision so that

users can find content via a search interface;

● Control Surfaces that control Devices via their Control Interfaces;

● Monitoring Tools that make use of the Monitoring Interfaces of Devices.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 35

Figure 15: Component model

Connection Management

Figure 16 shows an example in which an engineer uses a web-based routing panel to connect a

Receiver to a Sender. This demonstrates the use of Discovery using mDNS Advertisements,

subscription to a Query Interface and accessing an SDP document to subscribe4 to the stream

corresponding to a Flow.

4
 Note that “subscribe” is used both to mean subscription to a Query Interface, and subscription to an

RTP stream.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 36

Figure 16: Connection management sequence

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 37

Appendix A - Model views

The models in Appendix A are a stable representation that will be subsequently developed

based on practical experience. While these models have not been included in the body of the

Reference Architecture, they provide a level of detail which is missing in the RA itself. It is

recognized that additional detail will be necessary in the RA if the JT-NM is to achieve its goal of

increasing the level of interoperability between professional networked media implementations.

It is anticipated that these models will prompt ongoing discussion in the industry.

Why modeling

Modeling uses a common language to represent elements of media companies in a way that is

widely understood in the IT industry. It enables JT-NM to present a reusable architectural

framework concisely as:

● a few pages of paper;

● a computer-based model that can automatically be transformed into skeleton code.

The value of these models is as much about facilitating easier dialogue between the worlds of IT

and media professionals, as it is about the user-story-derived architecture models presented.

The media-specific models are expressed as four diagrams that make use of the more general

Unified Modeling Language (UML). As the explanatory text provided with the diagrams provides

only supplementary explanation, to read and understand the meaning of the models requires an

understanding of UML. It is highly recommended that anyone who is not familiar with UML

should first read “Modeling with the Unified Modeling Language” which can be found on the

JT-NM website (http://www.jt-nm.org/articles) Further background information about the

software-only context of modern data center technologies that are the intended target for the

UML reference models can be found in a companion document, “Media Architectures fit for the

IT Data Center” at the same website.

Data Model

The JT-NM data model started life by extracting the nouns from the user stories published as

part of the first phase of the Task Force5. Subsequent analysis has been done to find the

relationships between the key terms, to merge similar concepts, to give them the same names

and to compress a relatively large number of related ideas down to a simple model. A single

page representation has great value as it can easily be digested and be the basis of

interoperability, with the inevitable consequence that a very large amount of detail has been

hidden by abstraction.

5
 http://www.videoservicesforum.org/download/jtnm/User%20Requirements%20Report%20-

%20Final_with_user_stories.pdf

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://www.jt-nm.org/articles
http://www.videoservicesforum.org/download/jtnm/User%20Requirements%20Report%20-%20Final_with_user_stories.pdf
http://www.videoservicesforum.org/download/jtnm/User%20Requirements%20Report%20-%20Final_with_user_stories.pdf

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 38

Figure 17: Data model

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 39

The Foundational Frameworks of Identity, Timing and Discovery & Registration Frameworks are

all consistent with this data model.

Full definitions of the core classes of this model can be found in the glossary and, where

appropriate, the relevant framework section of this document. The model is consistent with the

conceptual model presented earlier. Some classes are provided for example or informative

purposes and these are described in this section.

Products and Content

The abstract Content and Product classes of the model are informative and included here to

show the general relationship between items of business value and the networked-media

Resources that can be used to realize that value. Each business will have its own descriptive

and enterprise metadata models and the details are out of scope of JT-NM. For example, EBU

Core provides a metadata model that could be substituted here.

Content may have many versions with differing levels of quality. There are four high-level

measures of quality:

● time-domain transformed, such as chroma sub-sampling of picture data;

● frequency-domain transformed, as used by many codecs;

● raw data, such as that which comes directly from the sensor of a camera;

● pure data, where a creative idea can be captured and transported mathematically and

recreated according to the ability of the receiving device, e.g., vector graphics.

Any transformation of media may either be reversible (e.g., zip) or non-reversible (e.g., H.264).

Further constraints on quality, such as resolution or bit rate, may be represented in more

specific technical metadata associated with the content, such as the file descriptors used in

MXF files.

Transport and Storage

In many models, media is broken down into its constituent parts, such as audio and video tracks

with their associated data Essence. In this model, components or tracks are referred to as

logical Sources, with each Source realized as Flows of different qualities. In turn, each Flow

may have a number of Grains that represent an elemental unit of Essence with associated

timing information – a similar concept to the access unit wrapped in a PES packet in MPEG

standards. Grains have Grain Payloads that can be created by a suitable encoder (e.g., codec

library) and played or realized by a suitable decoder (e.g. digital TV).

Sources, Flows and Grains have unique identities consistent with the identity framework.

Further details of establishing timing relationships between Flows and Grains are provided with

the timing framework.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 40

The following table defines kinds of Sources, Flows and Grains and how they are related:

Source Flow Grain Description of Grain

VideoSource VideoFlow VideoGrain Represents a practical basic unit of video such as a
single frame, field or GOP.

AudioSource AudioFlow AudioGrain Represents either a group of continuous audio samples,
in a format such as PCM, or an access unit of encoded
samples, such as 1024 samples for AAC audio.

DataSource DataFlow DataGrain Represents non-video and non-audio time-related data
that are associated with the media. See table below.

Although not an exhaustive list, the model provides further examples of a few common types of

data, as detailed in the following table.

Flow Example Data
Payload

Description

DataFlow SCTETrigger /

FrameTimedEvent /

FiredEvent

Represents time-related, synchronized, supplementary
data either used in production, such as position and
orientation of a camera, or delivered to a downstream
device to trigger a particular behavior, such as local
advert insertion.

Examples:

CaptionsFlow CaptionsElement Represents a closed captions stream (subtitle stream)
that can be delivered in parallel to the video and audio,
allowing a user to switch on and off the display of
captions in the receiver.

BurnedInFlow CaptionsElement /

FrameTimedEvent /

FiredEvent

Represents either a keyed overlay of graphics or other
video material to combine with the main stream, or a set
of timed instructions to equipment to produce overlays as
required. The intended result is a combination of Flows
before display.

DescriptiveFlow Document Represents supplementary data that may or may not be
time synchronized, enabling self-describing content
and/or for interactive presentation in an application (e.g.,
HTML 5 browser, phone/tablet app, interactive TV
service).

Specific Renditions of a Source Group may be stored as, or streamed in, a packaged collection.

The Flows and Grains of each kind of Rendition can be mapped to and from other kinds of

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 41

container, often with no need for transformation of the Grain’s Payload. The model summarizes

these as described in the table below:

Container Medium Description

File FileSystem Storage of all the Grain Payloads required to make a Rendition in a
single file, often an interleaved frame-wrapped file such as an MXF
OP-1a file or an MP4/MOV file. Files are stored in a file system,
such as a local hard drive or distributed shared file system.

FileList FileSystem The Grain Payloads are stored in separate files, often one file per
Flow, with an additional means to bind the presentation together.
Examples include AS-02 bundles and IMF packages.

BLOB (binary

large object)

ObjectStore One or more Grain Payloads are stored as binary large objects on
an object store, with an additional object or database used to
recreate Flows and bind the presentation together. Examples
include Amazon S3 storage and OpenStack Swift.

Stream Multiplex The Grain Payloads of Flows from the same Rendition are
interleaved in a stream so that they can be reproduced with a
minimal amount of buffering. Multiple Renditions may be combined
into a single Multiplex, for example multiple MPEG Program
Streams in a MPEG Transport Stream.

Work

Work is queued and executed in a broadcast facility, with the associated kinds of task:

● Process – workflow engines execute business Processes by triggering and tracking the

activities that need to happen so as to achieve a business goal, such as transcoding and

delivering every episode of a series of TV programs to a number of origin servers.

● Rule – managed by rules engines to maintain state consistent with business policies,

such as how many geographically dispersed copies of an item of content must be

available.

● Schedule element – schedule engines make sure that content is prepared in time and

loaded onto servers ready for delivery to a pre-defined schedule, with adjustments to suit

live events as required;

All of these engines initiate Tasks that need to be executed and tracked. These Tasks make use

of the Capabilities of the available Devices using the available Content.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 42

Timing model

Many different kinds of timing models exist within the media industry. Some are specific to

applications (e.g., live production, post production, scheduling) and others to technologies (e.g.,

tape-based workflows, file-based workflows, audio mixing). This timing model aims to capture

just enough about these different domains of timing that the representations can be mapped

between one another, including to the minimal model of the Timing Framework.

Figure 18: Timing model

Consider how the model maps to various different formats:

● The Minimal Timing Framework is supported, with PTP Time Stamps, the SMPTE

Epoch, nanosecond Time Bases and a PTP clock.

● Professional media files, such as MXF files, have a close relationship to their tape

predecessors with a rational Time Base and a Timecode track allowing each frame of

video to have a Time Label. The index table of an MXF file allows frames or samples to

be accessed using a zero-based index from the start of the file. Synchronized tracks in

an MXF file may be slightly offset from one another to compensate for sample groupings

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 43

with different Time Bases (e.g. AAC audio payloads at 48000/1024 with video at

60000/1001).

● MPEG transport streams use a 90000Hz clock to Time Stamp each access unit and

enable a decoder to synchronize streams, where an access unit is typically a frame or

group of audio samples.

Different media operations have different requirements for timing labels:

● Many sports workflows relate time-of-day to Timecode so that the wall clock time of an

event, such as a goal in soccer, matches the labelled time.

● A drama may have a relationship between elapsed program time and a script, e.g. the

show “24”.

● Multi-camera live studio workflows may use a timing reference to synchronize frame

outputs.

● Playout operations may expect all delivered programs and/or their segments to start

from a given Timecode, such as 10:00:00:00.

Networked media resource dynamics

Networked media physical and virtual infrastructure will always be in a state of change as it

dynamically adjusts to agile requirements. This includes:

● The concept of Devices providing their Capabilities for runtime discovery and use has

been introduced in the Discovery & Registration Framework.

● Before this is possible, Nodes have to be configured and connected to Networks,

possibly more than one network at a time.

● Devices are deployed onto Nodes. A virtual Device may require some static

Configuration as part of this process, or may expose every aspect of its Configuration via

a Capability, such as the use of the Amazon EC2 API to start a virtual machine in the

cloud.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 44

Figure 19: Networked media resource dynamics model

To support discovery and registration, Nodes must be attached to at least one or more

Bidirectional Networks. Nodes may also be attached to Unidirectional Networks at the edge,

such as bookable long distant circuits (e.g., satellite circuit), but the Capabilities offered by the

circuits must be discovered, configured and monitored via a Bidirectional Network. Through a

Node’s Configuration, the system may be aware of Unidirectional Networks or other signals.

Capabilities may be parameterized using a rich and extensible library of parameter types,

although this is to be determined fully in future work. For example, such a type may represent a

fader control on a mixing desk or the array of record and playback buttons on a camera.

Nodes and Devices can be monitored for their performance, system health and reported faults

through Monitoring Interfaces.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 45

Appendix B - Glossary of terms

Note: Some defined terms appear in the UML models and conceptual model with spaces removed, as is a convention

or even a necessity when formatting literals in computer code. Defined terms with spaces and model elements

without spaces refer to the same term. For example, “TimeBase” in the model is the same as “Time Base” in the

glossary and text of this document.

Advertisement: A network announcement of an Interface (including Registration, Query, and

Node Interfaces) or a Discoverable

This is one mechanism to allow Devices and clients to discover the Interface and resolve its Endpoint.

Advertisements of Discoverables are used for peer-to-peer discovery.

Bidirectional Network: A Network that allows information to pass both into and out of a Node

Although a Node could stream onto a Unidirectional network, a Bidirectional network is needed to support

Discovery & Registration and management of its Devices.

Capability: a representation of a “usefully minimal” item of functionality provided by a Device,

providing just enough information for an application to be suitably paired with the Device

Examples of Capabilities could include:
o Decode a particular Essence compression format

o Support changes of frame rate (for the output of a Source Device or Processing Device)

o Playback a stored Flow

o Set encoding parameters

o Position an on-screen graphic

Each Capability is read-only; its meaning is fixed for the lifetime of the Device. However, as in the “set

encoding parameters” example above, a Capability may be realized through writable parameters. Also, a

Device may add or remove Capabilities during its lifetime.

Clock: a networked component providing a ubiquitous time reference

Configuration: A static collection of values for parameters those are required when a Node or

Device is provisioned

Examples of configuration parameters include:
o IP address and hostname of a node;

o Setting a camera to NTSC or PAL mode.

Content: Essence that adds value to an organization

Control Interface: an Interface that allows control of the operation and parameters of a Device

Control Surface: a user interface on a client that accesses one or more Control Interfaces

Destination Device: A Device that has at least one Receiver, i.e. it has input(s)

A video monitor is an example of a Destination Device.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 46

Device: a logical block of functionality within a networked media infrastructure

Example of Devices could include:
o Camera

o SDI to IP adapter

o Chroma keyer

o Audio mixer

A Device may have a permanent presence on its Node (Fixed Device, e.g., a networked camera), or it may

be created on demand by its Node (Virtual Device, e.g., a software-based transcoder). Nodes may

dynamically create different types of Device (Dynamic Device).

Discoverable: something that can be discovered and registered. Examples include: Device,

Node, Capability, Source, Flow, Sender and Receiver

A Discoverable has a unique identifier and other useful information (e.g. a human-readable label).

Endpoint: the network entry point to a running instance of an Interface

Epoch: identifies the zero value of a Clock

Essence: video, audio or data, typically intended for consumption

Example of Essence could include:
o The video portion of a program

o The audio portion of a program

o Time-synchronized metadata for subtitles or closed captioning

Flow: a sequence of Grains from a Source; a concrete representation of content emanating

from the Source

For example, sequences of Grains formed from Raw, JPEG2000 and AVC-I encodings of the same video

content are Flows of the same Source

GOP: A Group of Pictures that is a bounded succession of frames within a coded video stream.

In many streaming applications, each GOP provides a clean random access point from where

decoders can start playing video.

Grain: represents an element of Essence or other data associated with a specific time, such as

a frame, or a group of consecutive audio samples, or captions

Grain Payload: The element of Essence or other data within a Grain

ID: A Stable Identifier for Immutable Objects consisting of at least one Unique Resource

Identifier, with an optional revision number to track updates. Provides the type for all identifiers

that are properties of the classes of JT-NM model

ID With Hash: A kind of revision-specific identifier that includes a hash value of the value it

identifies, used to detect and assist with conflict resolution on the update of values across

distributed networks

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 47

Immutable Object: A Resource whose state cannot be altered after it is created. If the

Resource is changed (i.e. mutated) in any way, it is considered as a new revision of that

Resource with an updated revision number component of its unique ID

Interface: provides a specified access to some functionality over a network. May be advertised

for discovery purposes

Media: Audio, video, and other means to carry general communication, information, or

entertainment

Monitoring Interface: an Interface allowing a Monitoring Tool to obtain information about the

status of a Device

Monitoring Tool: a tool used to obtain information about the status of Devices

Network: Infrastructure for the interconnection of Nodes

Node: a logical host, acting as a container of one or more Devices

A Node may have a permanent physical presence, or may be created on demand, for example as a virtual

machine in a cluster or cloud.

Node Interface: a Node provides this Interface to list the Devices and associated Discoverables

hosted on it

Processing Device: A Device that has at least one Sender and at least one Receiver, i.e. it has

input(s) and output(s)

A transcoder is an example of a Processing Device.

Query Interface: an Interface that allows an application to:

o retrieve representations of registered Discoverables

o subscribe to registrations or de-registrations of Discoverables

o A Query Interface may allow filtering.

Receiver: consumes a Flow from a Sender

A Receiver could be considered as a “virtual input port” on the Device.

Registration Interface: an Interface that allows a Node to register and de-register its

Discoverables with a Registry

Registry: a component that holds information about the Discoverables present on the network

Rendition: A collection of time-synchronized Flows intended for simultaneous presentation,

providing a complete experience of a Source Group. Renditions can be stored or streamed.

For example, a representation of a source group consisting of low bitrate video (H.264 at 2Mbps),

compressed audio (AAC) and closed captions (timed text) intended for consumption on a mobile phone.

Higher bitrate versions of the source group may be available for presentation on HD televisions etc.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 48

Resource: An addressable part or element of any system with a unique ID

All addressable instances of classes in the JT-NM models are Resources, including Discoverables, Content,

Tasks, Files, and Streams.

Sender: makes a Flow available on the network

A Sender could be considered as a “virtual output port” on the Device.

Source: an abstract concept that represents the primary origin of a Flow or set of Flows

A Device may provide several Sources e.g. a video camera has separate video and audio sources

Source Device: A Device that has at least one Sender, i.e. it has output(s)

A camera is an example of a Source Device.

Stable Identifier: Identifier that persists from its creation both during and beyond the lifetime of

the identified Resource. The identifier is not subsequently reused

Synchronization: The ability for media processing systems to determine which grains are

intended for simultaneous presentation

Time Base: specifies the units used for measuring time. Expressed as a rational (or integer)

number of units per second.

Timecode: a representation of a time within a video with a precision of frames. The Epoch of

Timecode is often implementation-specific. When used with fractional frame rates, some

Timecode values may be skipped to maintain long-term alignment with the frame cadence (this

is known as “dropFrame” Timecode).

Time Label: a representation of time as a count at a media-related Time Base (e.g., video

frame rate)

Time Stamp: an absolute time (that is, an offset from the start of an Epoch) describing the

relationship of a Grain with a Clock

Unidirectional Network: A Network that only supports information flow into, or out of, a Node.

Wall Clock Time: a representation of a specific time in a specific time zone.

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

EBU/SMPTE/VSF JT-NM Reference Architecture

 This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported 49

Acknowledgements

The JT-NM reflector comprises more than 300 participants from 175 organizations.

The JT-NM administrative group would like to thank all the participants who contributed their

thoughts over the past months in multiple meetings and teleconferences. This work has been

compiled and the technical contributions have been synthesized into this report by the following

authors:

Peter Brightwell – BBC Research & Development, Dr. Richard Cartwright – Quantel, Thomas

Edwards – Fox, Richard Friedel – Fox, Janet Gardner – Perspective Media Group, Brad Gilmer

– Gilmer & Associates, Chuck Meyer – Grass Valley, Carl Ostrom – System Resource, Felix

Poulin – EBU, Dr. Karl Schubert – Technova Consulting, Robert Wadge – BBC Research &

Development

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nd/3.0/deed.en_US

	Ownership and copyright
	Contents
	What is JT-NM?
	Purpose, Motivation and Scope
	Reference Architecture
	Hierarchy of Architectures
	Context of the JT-NM RA

	Systems Architecture
	Layered view
	Capabilities view

	Conceptual model
	Foundational Frameworks
	Identity Framework
	Introduction
	Prescriptive
	Best Practices
	Model
	Standards
	Examples

	Timing Framework
	Introduction
	Prescriptive
	Time Stamp and Time Base
	Synchronization

	Best Practices
	Time Stamp and Time Base
	Synchronization

	Model
	Standards
	Examples

	Discovery & Registration Framework
	Introduction
	Prescriptive
	Best practices
	Model
	Standards
	Examples
	Registration
	Query
	Peer-to-peer operation

	Other System Capabilities
	Device/Node Capabilities
	Device Provisioning
	Resource Management
	Flow Transformation
	Re-timing
	Flow Transport
	Connection Management
	Flow Storage and Retrieval
	Control Surface / UI
	Distributed Monitoring
	Master Clock

	Making the Reference Architecture Real
	Device Interconnection Illustration
	Connection Management

	Appendix A - Model views
	Why modeling
	Data Model
	Products and Content
	Transport and Storage
	Work

	Timing model
	Networked media resource dynamics

	Appendix B - Glossary of terms
	Acknowledgements

